OpenTopography Tool Registry

Welcome Guest   ( Sign Out )
The OpenTopography Tool Registry provides a community populated clearinghouse of software, utilities, and tools oriented towards high-resolution topography data (e.g. collected with lidar technology) handling, processing, and analysis. Tools registered below range from source code to full-featured software applications. We welcome contributions to the registry via the Contribute a Tool page.

Appearance of a tool in the OpenTopography Tool Registry does not imply endorsement, recommendation, or support, by the NSF OpenTopography Facility and is meant simply as a service to our users. OpenTopography does not guarantee the completeness or accessibility of specific content and links contributed by users. If you have been directly involved with the development of a registered tool and are not the original contributor of the tool to the registry, please email info@opentopography.org to supply updates or modifications to its entry.
Tool Name Date   Tool Type Rating
1   TopoRivBlender 24 Sep 2025 Visualization
Keywords: blender, topography, hydrography, render, 3D, remote-sensing
License: Other

Description: TopoRivBlender contains Python functions and workflows that allow for reproducible, automated generation of 3-dimensional images. The workflow is coded using a snakemake workflow that will programmatically (a) download geospatial data, (b) create 3-dimensional (3D) objects in Blender, and (c) generate the rendered image, all in just a few minutes. Rendering is the process of using your computer’s CPU or GPU to predict how light bounces off 3D objects into a simulated camera to make an image.

The topo part of this workflow’s name stands for topography. Topographic data tells us the height (or elevation) of the Earth’s surface. When this data is recorded in a digital form, it is often referred to as a Digital Elevation Model (DEM). DEMs are commonly saved as raster files, which is a gridded dataset.

The riv part of this workflow’s name stands for river network. River network data tells us where streams and rivers flow and connect. The locations of river and surface water are commonly saved as vector files. In these vector files, river pathways are represented as a series of lines that connect to one other on the Earth’s surface.

Blender is a free and open-source 3D graphics software that you can use to create photorealistic images. In this workflow, we use Python to process the geospatial data for Blender to create the 3D images. We also utilize the Blender Python API to render images with code.

See more infor here: https://waterdata.usgs.gov/blog/topo-riv-blender/